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Abstract

Purpose – The quality of crystals grown in space can be diversely affected by the melt flows induced
by g-jitter associated with a space vehicle. This paper presents a full three-dimensional (3D) transient
finite element analysis of the complex fluid flow and heat and mass transfer phenomena in a simplified
Bridgman crystal growth configuration under the influence of g-jitter perturbations and magnetic
fields.

Design/methodology/approach – The model development is based on the Galerkin finite element
solution of the magnetohydrodynamic governing equations describing the thermal convection and
heat and mass transfer in the melt. A physics-based re-numbering algorithm is used to make the
formidable 3D simulations computationally feasible. Simulations are made using steady microgravity,
synthetic and real g-jitter data taken during a space flight.

Findings – Numerical results show that g-jitter drives a complex, 3D, time dependent thermal
convection and that velocity spikes in response to real g-jitter disturbances in space flights,
resulting in irregular solute concentration distributions. An applied magnetic field provides an
effective means to suppress the deleterious convection effects caused by g-jitter. Based on the
simulations with applied magnetic fields of various strengths and orientations, the magnetic field
aligned with the thermal gradient provides an optimal damping effect, and the stronger magnetic
field is more effective in suppressing the g-jitter induced convection. While the convective flows
and solute transport are complex and truly 3D, those in the symmetry plane parallel to the
direction of g-jitter are essentially two-dimensional (2D), which may be approximated well by the
widely used 2D models.

Originality/value – The physics-based re-numbering algorithm has made possible the large scale
finite element computations for 3D g-jitter flows in a magnetic field. The results indicate that an
applied magnetic field can be effective in suppressing the g-jitter driven flows and thus enhance the
quality of crystals grown in space.

Paper type Research paper

Keywords Simulation, Crystal growth, Fluid flow, Heat transfer, Magnetic fields

The Emerald Research Register for this journal is available at The current issue and full text archive of this journal is available at

www.emeraldinsight.com/researchregister www.emeraldinsight.com/0961-5539.htm

Financial support of this work by NASA Microgravity Division (Grant Nos: NCC8-92 and
NAG8-1693) is gratefully acknowledged, and so is Cindy Zhang’s assistance in developing the
3D computer graphics capabilities used in the paper.

HFF
15,8

872

Received February 2004
Revised October 2004
Accepted October 2004

International Journal of Numerical
Methods for Heat & Fluid Flow
Vol. 15 No. 8, 2005
pp. 872-893
q Emerald Group Publishing Limited
0961-5539
DOI 10.1108/09615530510625138



Nomenclature
B0 ¼ applied magnetic field magnitude
B ¼ applied magnetic field
Cp ¼ heat capacity of melt
C ¼ concentration
C ¼ discretized concentration vector
CB ¼ the buoyancy matrix
Cp ¼ the gradient matrix
d ¼ cylinder diameter
D ¼ diffusion coefficient of solute
f ¼ g-jitter perturbation frequency
FU ¼ force vector
g ¼ g-jitter perturbation magnitude
g0 ¼ earth gravity (9.8 m s22)
g ¼ gravity vector
g * ¼ gravity unity vector
Ha ¼ Hartman number ðHa ¼ BL

ffiffiffiffiffiffiffiffiffi
s=m

p
Þ

î; ĵ ¼ unit vectors of the ith, jth component
k ¼ solutal segregation coefficient
K ¼ diffusion matrix
L ¼ length
L0 ¼ length scale
M ¼ mass matrix
n ¼ the outward normal
N ¼ advection matrix
p ¼ pressure
P0 ¼ pressure scale
Pr ¼ Prandtl number ðPr ¼ n=aÞ
P ¼ discretized nodal pressure vector
Ra ¼ Rayleigh number ðRaðtÞ ¼ bgðtÞðTh 2

TmÞL
3=naÞ

Sc ¼ Schmidt number ðSc ¼ n=DÞ
t ¼ time
t0 ¼ time scale
T ¼ temperature

T ¼ (u * 2 Tm)/(Th 2 Tm)
Tm ¼ dimensional melting temperature

Th ¼ dimensional temperature at inlet
T ¼ discretized temperature vector
U0 ¼ velocity scale
u ¼ velocity vector
û ¼ unit velocity vector
U ¼ discretized velocity vector
Vm ¼ heater translation velocity
x; y; z
¼ dimensionless coordinates

Greek
k ¼ thermal diffusivity
b ¼ thermal expansion coefficient
dij ¼ delta function
m ¼ dynamic viscosity
n ¼ kinematic viscosity
u * ¼ dimensional temperature
r0 ¼ density of the melt
F0 ¼ electric potential scale
s ¼ electrical conductivity
f ¼ shape function for velocity
u ¼ shape function for temperature
c ¼ shape function for pressure
F ¼ disctertized electric potential vector
›V ¼ boundary of computational domain
7 ¼ gradient operator

Subscripts
i; j ¼ the ith, jth point
n ¼ the nth component
m ¼ viscosity related

Superscripts
i, j ¼ the ith, jth component
T ¼ matrix transpose

1. Introduction
Space experiments have revealed that solute striations in space-grown crystals are
primarily caused by the melt convection generated by residual gravity forces, or
g-jitter, associated with space vehicles such as the Space Shuttles and the
International Space Station. Signatures registered by on-board accelerometers
indicate that g-jitter perturbations are random in both direction and time and are
attributed to a variety of sources including atmospheric drag, solar radiation,
thruster firings, pump and other mechanical component operations, and astronaut
exercises (Alexander and Banish, 1998). One set of g-jitter data recorded during a
space flight is shown in Figure 1. While small, these perturbed gravity forces can
produce complex, irregular, three-dimensional (3D) convective flows in the melt
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pool, which are blamed for non-uniform solute distributions and other defects
formed in the crystals grown in space (de Groh and Nelson, 1994).

There has been substantial work on convective flows in single crystal growth
systems induced by g-jitter perturbations in space. Both steady state and transient
g-jitter effects have been considered. Findings from these studies may be summarized
as follows. The frequency, amplitude and spatial orientation of the g-jitter all play an
important role in affecting the convective flows. The most detrimental effects of g-jitter
come from the low frequency components with large amplitudes, especially when they
are acting perpendicularly to the temperature gradient imposed for the growth of
crystals from their melts (Alexander et al., 1989, 1991; Kamotani et al., 1995; Tang et al.,
1996; Monti and Savino, 1998; Li et al., 2003). For semiconductor single crystal growth
applications, the effects of the high frequency g-jitter components may be neglected
(Alexander et al., 1989, 1991).

Magnetic damping of the motion of an electrically conducting fluid stems from the
interaction between the convection and an applied magnetic field, which generates an

Figure 1.
Signature of g-jitter data in
the x-, y- and z-directions
as function of time
registered by an
accelerometer aboard the
Space Shuttle, where time
is measured in seconds
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opposing Lorentz force to suppress the flows. While magnetic damping has been
widely exploited to obtain more homogeneous semiconductors and metal crystals
under terrestrial conditions (Series and Hurle, 1991), relatively little has been done on
the magnetic damping of the deleterious effects associated with low frequency g-jitter
during space crystal growth. Recently, analytical, asymptotic and numerical analyses
have been performed for two-dimensional (2D) geometries related to space processing
(Li, 1996, 2001; Pan and Li, 1998; Shang et al., 2001; Ma and Walker, 1996). These
analyses show that magnetic fields can provide an effective means to damp the g-jitter
induced convective flows. While these 2D models have been very useful in developing
a fundamental understanding, they are inadequate to address other many issues
crucial to space experiments design and system performance. For example, g-jitter is
known to be 3D and time-dependent in nature and is conceived to drive a spatially and
temporally irregular 3D flow, which obviously cannot be faithfully described by a 2D
model. Also, how the 3D flow structure develops in space and time and how the flow
affects the thermal and solute transport in the melt in a space environment are not well
understood. Moreover, the behavior of the time-evolving 3D flow and its interaction
with an applied magnetic field are even less appreciated. Despite their popularity, the
limitations and validity of the 2D models for g-jitter induced flows with and without an
applied field have not yet been established. Undoubtedly, full 3D models are required
to adequately address these issues.

This paper presents a full 3D transient finite element model for magnetic damping
on g-jitter induced fluid flow and heat and mass transfer in an idealized Bridgman
system for the melt growth of the Ga-doped germanium single crystal in space. The
model development is based on the Galerkin finite element solution of
magnetohydrodynamic equations governing the fluid flow and heat and mass
transfer in the presence of time dependent gravity perturbations and applied magnetic
fields. Both synthetic g-jitter and real g-jitter data are used in the analyses.

2. Problem statement
Figure 2 shows the simplified 3D model for the Bridgman system for Ga-doped
germenium single crystal growth in microgravity, along with the coordinate system
used for the numerical analyses. The simplification comes from neglecting the
solidification phenomena by assuming a flat solid-liquid interface as a first
approximation. A 2D model of this type, whose limitations and validity will be
checked against the 3D model, has been studied extensively in literature and the
justification of the simplification is documented (Alexander et al., 1989, 1991), who
suggested that for melt flow study, a flat solid-liquid interface serves a good
approximation. Referring to Figure 2, the melt is fed from inlet into the melt pool while
the single crystal is withdrawn from below. Both the dependence of melting
temperature on solute concentration and the solutal expansion coefficient are
neglected, because the solute concentration being considered is dilute and the solutal
expansion coefficient is small (Alexander et al., 1989, 1991). For the present
configuration, the lower side marked by h2 is insulated and the upper wall is fixed at
the same temperature as the top surface or the melt inlet. This specific configuration is
chosen, also because it can be used to compare with the results obtained from its 2D
counterparts (Alexander et al., 1989, 1991; Shang et al., 2001).
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The physical phenomena occurring in the system described above are governed by the
Maxwell equations for the electromagnetic field distribution, the Navier-Stokes equations
for fluid flow and the scalar transport equations for both heat and mass transfer.
For laboratory systems such as the one being considered, the magnetic Reynolds number
is small. Consequently, the induced magnetic field is negligible in comparison with the
imposed magnetic field and so does the time variation of the induced electric field
(Li, 1996; Pan and Li, 1998). These considerations allow us to reduce the Maxwell
equations to one scalar equation for the electric potential (Li, 1996). With these
simplifications and further with the Boussinesq approximation, the non-dimensional
governing equations for the 3D transient model may be written as follows:

7 ·u ¼ 0 ð1Þ

›u

›t
þ u ·7u ¼ 27pþ Pr72u2 RaPr Tg* þ Ha2 Prð27Fþ u £ BÞ £ B ð2Þ

›T

›t
þ u ·7T ¼ 72T ð3Þ

Sc

Pr

›C

›t
þ u ·7C

� �
¼ 72C ð4Þ

72F ¼ 7ðB £ uÞ ¼ Bð7 £ uÞ ð5Þ

In deriving the above dimensionless equations, the following scales have been used:
L0 ¼ d; U 0 ¼ k=L0; t0 ¼ L2

0=k; P0 ¼ r0U
2
0 and F0 ¼ kB0: Referring to Figure 2, the

boundary conditions are phrased in mathematical terms:

Figure 2.
Schematic representation
of the simplified model of
3D Bridgman crystal
growth system
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T ¼ 0 at z ¼ 0 ð6Þ

u ·n ¼
PegPr

Sc
at z ¼ 0 ð7Þ

u £ n ¼ 0 at z ¼ 0 ð8Þ

n ·7C ¼ Pegð1 2 kÞC at z ¼ 0 ð9Þ

T ¼ 1 at z ¼ 1 ð10Þ

u ·n ¼ 2
PegPr

Sc
at z ¼ 1 ð11Þ

u £ n ¼ 0 at z ¼ 1 ð12Þ

n ·7C ¼ 2PegðC 2 1Þ at z ¼ 1 ð13Þ

u ·n ¼
PegPr

Sc
at r ¼ 0:5 ð14Þ

u £ n ¼ 0 at r ¼ 0:5 ð15Þ

n ·7C ¼ 0 at r ¼ 0:5 ð16Þ

T ¼ 1 at r ¼ 0:5; h1=d , z , 1 ð17Þ

n ·7T ¼ 0 at r ¼ 0:5; 0 , z , h1=d ð18Þ

n ·7F ¼ 0 at z ¼ 0; 1; r ¼ 0:5 ð19Þ

Note that equation (19) basically states that the normal component of the electric current
density is zero on the solid walls, because the walls are electrically insulated. The
boundary conditions are the extension of 2D model presented elsewhere (Shang et al.,
2001).

3. Numerical method
The above equations along with the boundary conditions are solved using the
Galerkin finite element method. Following the procedures in previous studies
(Shang et al., 2001; Song and Li, 2001), the governing equations are recast in
integral forms
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MU

†
UþKU ðUÞUþ

1

1
CPMPC

T
PUþ BBTþ BUU ¼ FU ð20Þ

MT

†
TþKTðUÞT ¼ FT ð21Þ

MC

†

CþKCðUÞC ¼ FC ð22Þ

KFFþ BFU ¼ FF ð23Þ

where the matrices are calculated by the following expressions:

MP ¼

Z
V

ccT dV ; MT ¼

Z
V

uuT dV

MU ¼

Z
V

ffT dV ; MC ¼

Z
V

Sc

Pr
uuT dV

DU ¼

Z
V

Pr7u ·7uT dV ; DC ¼

Z
V

7u ·7uT dV

DT ¼

Z
V

7u ·7uT dV ; KF ¼

Z
V

7u ·7uT dV

AU ðUÞ ¼

Z
V

fu ·7uT dV ; AT ðUÞ ¼

Z
V

uu ·7uT dV

ACðUÞ ¼

Z
V

Sc

Pr
uu ·7uT dV ; BT ¼

Z
V

ðRaPrgfuTÞdV

BU ¼

Z
V

fT B ·7uT dV ; BF ¼

Z
V

uB ·7 £ ðuTûÞdV

HU ¼ 2

Z
V

fHa 2PrðfTû £ B £ BÞdV ; FU ¼

Z
›V

n · tf dS

FC ¼ 2

Z
›V

qCu dS; FT ¼ 2

Z
›V

qTu dS

KU ðUÞ ¼ DU þAU ðUÞ þHU ; KTðUÞ ¼ DT þATðUÞ

KCðUÞ ¼ DC þACðUÞ; CP ¼

Z
V

7fcT dV
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The above matrix equations are solved using the successive substitution method
and the time derivatives are approximated using the implicit finite difference
scheme.

4. Some computational aspects
Equations (20)-(23), formulated as above, represent an extremely computationally
intensive task when the LU decomposition method is used to invert the matrix, even
with all necessary speed-improving measures such as skyline storage and an optimized
heuristic re-numbering scheme. To see this, the final finite element global matrix
assembled from equations (20)-(23) is given in equation (24) below

M 0 0 0

0 MT 0 0

0 0 MC 0

0 0 0 0

2
6666666664

3
7777777775

_U

_T

_C

_F

2
6666666664

3
7777777775
þ

KU þ 1
1
CPM

21
P CT

P BT BC BF

0 KT 0 0

0 0 KC 0

BU 0 0 KF

2
6666666664

3
7777777775

U

T

C

F

2
6666666664

3
7777777775

¼

FU

FT

FC

FF

2
6666666664

3
7777777775

ð24Þ

Tests on a SGI supercomputer (Onyx model) machine showed that each non-linear
iteration required about 120 CPU minutes for a 3D model consisting of 5,304 nodes (see
Figure 3 and Section 4.1 below). A typical transient simulation requires about 1,000
time steps and within each step about 3-4 iterations are needed to converge. This
means that a complete run would require about one year CPU time, which clearly is an
impractical task.

On the other hand, matrix given by equation (24) has a very significant number of
unfills during the LU decomposition, which is a bottleneck for computational speed,
and the use of various heuristic re-numbering algorithms did not seem to alleviate the
problem much. Examination of the matrix structure, however, suggests that all the B
submatrices may be moved to the right side through simple matrix operations so as to
substantially reduce the bandwidth of the final matrix and hence the number of unfills.
For a flow simulation where flow velocity is not high, such as the case being
considered, matrices BT and BC may be put on the right-hand side with a decreased
numerical performance. This physics-based re-arranging, which is based on weather or
not the interaction between the fields is strong, is followed by re-numbering the final
matrix by re-grouping KT, KC and KF into three separate matrices, each stored in a
skyline format. This procedure has greatly reduced computational burdens associated
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with the 3D simulations. Indeed, numerical tests show that a factor of about 120 in
speed increase is achieved with this arrangement, compared with the traditional
skyline-LU based approach. A crucial step contributed to this drastic increase in the
computational speed involves re-designing the global matrix skyline structure to
pre-eliminate the unfills and a suitable LU solver that takes advantage of this
re-designed matrix structure. Also, this formulation requires an iterative procedure
and a tighter convergence criterion. For example, for the results to have the same
accuracy as the case when the force is included in the global matrix, the convergence
criterion for non-linearity at each time step has to set at the relative tolerance of
1 £ 1025 instead of 1 £ 1024: Fortunately, the convergence is very fast and at the worst
scenario case additional 2 or 3 iterations were required in comparison with the

Figure 3.
The 3D view of (a) flow
field; (b) solute
concentration distribution;
and (c) temperature
distribution with the
steady state microgravity
in the x-direction
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standard formulation. While not pursued in this study, a further increase in
computational speed may be possible by applying a parallel algorithm such that
matrices for the scalar quantities are calculated using a separate processor. The
re-arrangement described here should make it easy to design such a parallel
computational scheme.

5. Results and discussion
The finite element model described above enables the prediction of both steady and
transient thermal convection and heat and mass transfer in single crystal growth
systems under both terrestrial and microgravity conditions with and without presence
of applied magnetic fields. The model development is based on the modification of the
finite element code reported in early studies (Shang et al., 2001; Song and Li, 2001),
which include both code development and benchmark testing for thermal and fluid
flow calculations. The thermo-physical properties and geometric dimensions for the
study are given in Table I. The field variables have converged within a pre-set relative
tolerance of 1 £ 1025: Numerical simulations were carried out for a wide range of
conditions and a selection of the computed results is presented below.

5.1 Mesh independence test
Before calculations were carried out, mesh dependency was tested for numerical
simulations. A variety of mesh size and distributions was tested and the final finite
element mesh used for the results presented below is shown in Figure 3, which

Value

Property
K 17 W K21 m21

Cp 0.39 J g21 K21

r 5.6 £ 103 Kg m23

n 1.3 £ 1027 m2 s21

D 1.3 £ 1028 m2 s21

k 1.3 £ 1025 m2 s21

b 2.5 £ 1024 K21

Dimensionless parameters
Pr 0.01
Pe 5.0
Ra 1.45 £ 105 (based on g0)
Ha 100
Sc 10
Scale parameters
U0 1:3 £ 1023

t0 100/13
Operating conditions
Th 1331 K
L 0.01 m
Tm 1231 K
Vm 6.5 £ 1026 m s21

g/f g0 £ 1023/0.1 Hz
B0 0.022-0.22 T

Table I.
Parameters used in

calculations
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employed 5,304 8-node brick elements with an increasing mesh distribution near the
boundary. In determining the final mesh, a criterion used for mesh-independence check
is that two consecutive reductions in mesh size (reduced by half) produce a relative
error of the maximum velocities less than 0.1 percent. The test was done using the
steady state data with g ¼ g0 £ 1023 with Ha ¼ 100 and further checked with Ha ¼ 0:
It is noted here that for magnetic damping problems under consideration, a Hartmann
layer may persist near the walls. For high velocity flows, this layer may cause
difficulty in numerical simulations. Numerical experiments with various cases showed
that for the conditions and configurations under consideration, a placement of 3-5 finite
elements in the layer is able to provide needed accuracy.

5.2 Steady state calculations
The gravity level of an achievable dynamic weightlessness condition is g0 £ 1026:
Numerical simulations were carried out for this condition, and the results are helpful in
gaining physical insights into the steady state behavior of the system. They are also
the required initial condition for the dynamic behavior of the system when g-jitter sets
in. The simulations were based on the direct numerical solution to the steady state
governing equations obtained by dropping out the time dependent terms in the model
equations described in Section 2, while retaining all the mutually coupled terms. In
present study, the gravity orientation is assumed to be perpendicular to the
temperature gradient, say in the x-direction, which represents the worst scenario case.
The computed flow field, solute concentration distribution and temperature
distribution are shown in Figure 3. Apparently, the gravity has negligible effects on
the flow field, and the crystal pulling velocity controls the flow field (Figure 3(a)). The
solute concentration distribution is nearly parallel to solidification front (Figure 3(b)),
representing a nearly idealized purely diffusion controlled growth condition. The
temperature distribution is mainly controlled by the thermal conduction (Figure 3(c)),
and the thermal field remains basically the same even when the g-jitter induced
convection occurs. This is a direct result of small Pr number for the system being
studied. Thus the temperature distribution study is ignored thereafter. Moreover, all
the field variable distributions are nearly axisymmetric. The above results are
qualitatively consistent with those obtained from a 2D simplified crystal growth
system (Shang et al., 2001).

The 3D model also has been applied to study convective flows under other
microgravity conditions. One of the important issues that a 2D model has not yet been
able to answer is the 3D nature of the convective flows. Figure 4 shows the parallel
projection of plane-cut views of flow patterns obtained from the 3D models for different
levels of low gravity forces acting in the x-direction. Two types of plane-cuts are made:
one is the x-z (or y ¼ 0) plane (Figure 4(a) and (c)) and the other the y-z (or x ¼ 0Þ plane
(Figure 4(b) and (d)). In comparison with the published 2D model results (Alexander
et al., 1991; Shang et al., 2001), the flow fields depicted in the x-z plane (Figure 4(a), (c))
almost reproduce the 2D results, suggesting that a two-model indeed provides a
reasonably good representation of low gravity induced flows there. On the other hand,
the flow fields in the y-z plane (Figure 4(d)) reveal that a complex 3D convective flow
structure is developed when gravity increases to the level of g0 £ 1023; which is
obviously beyond any 2D description.
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An applied magnetic field is known to provide a damping mechanism for convective
flows. The flow patterns in the x-z and y-z planes obtained from the 3D model with an
applied magnetic field oriented in the z-direction are shown in Figure 4(e) and (f).
Comparison of the results in Figure 4 shows that an applied magnetic field is effective
in suppressing the low-gravity driven convective flows. The maximum velocities of the
flow field as a function of gravity level and applied magnetic field strength are
presented in Table II. Apparently, the maximum velocity decreases almost linearly as
the magnitude of the gravity decreases. This relation also holds true in the presence of
the magnetic field. For the cases with the same gravity level, a higher magnetic field
produces a stronger damping effect.

5.3 Single frequency g-jitter
The Fourier analysis of gravity measurements from accelerometers aboard the Space
Shuttles shows that g-jitter covers a wide range of frequency spectrum. A single
Fourier component of the synthesized g-jitter is useful in providing insightful
information on the general behavior of the fluid flow under the influence of the g-jitter.
Here, we consider a case in which g-jitter takes the form of gðtÞ ¼ g0 £ 1023sinð0:2ptÞ
acting in the x-direction and sets in to perturb the steady state condition discussed
above. The time evolution of maximum velocity in the melt, as the g-jitter disturbances
take effect, is shown in Figure 5. Here, it is seen that the melt convection evolves
eventually into a quasi-steady time-harmonic oscillating motion. Note that in
calculating the maximum velocities, the absolute values have been used. As one might
have expected, the flow field is complex, 3D and time evolving, which is illustrated by
the snapshot plots of the convection fields in Figures 6 and 7 over a time period after
the flow reaches the quasi-steady state. In the x-z plane (Figure 6), the convection loop
oscillates and reverses its rotating direction at approximately the same frequency of
the driving g-jitter force. The convection sweeps back and forth along the growth front
and causes the solute concentration distribution non-uniformity at the lower
solid-liquid interface. The similar flow field patterns were obtained with 2D models
(Alexander et al., 1991; Shang et al., 2001), suggesting again that a 2D model is capable
of predicting the velocity profiles reasonably well in the x-z plane when g-jitter acts in
the x-direction. The flow field pattern in the y-z plane is more complex (Figure 7),
clearly displaying the 3D nature of the g-jitter driven convection. The time evolution of
the flow, however, appears to follow the same oscillation frequency as the driving

g-jitter Umax

g ¼ g0 £ 1023 0.463
g ¼ g0 £ 1024 5.56 £ 1022

g ¼ g0 £ 1025 9.83 £ 1023

g ¼ g0 £ 1026 5.48 £ 1023

g ¼ g0 £ 1023 with B 2.06 £ 1022

g ¼ g0 £ 1024 with B 6.56 £ 1023

g ¼ g0 £ 1025 with B 5.16 £ 1023

g ¼ g0 £ 1026 with B 5.02 £ 1023

Table II.
The dependence of Umax

on gravity level
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Figure 4.
Plane-cut views of the flow
field induced by low
gravity in x-direction
without magnetic field (a)
x-z plane with g ¼ 1026;
(b) y-z plane with g ¼
1026; (c) x-z plane with g ¼
1023; (d) y-z plane with
g ¼ 1023; and with
magnetic field B ¼ 0:22 T
ðHa ¼ 100Þ in z-direction;
(e) x-z plane with
g ¼ 1023; (f) y-z plane with
g ¼ 1023
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g-jitter. Computed results were also obtained with g-jitter oriented in other directions
such as the x-y or x-y-z direction. The findings are qualitatively the same as above in
that a 2D model is useful in providing a good approximation of the flow field in the
symmetry plane parallel to the g-jitter direction, for instance, in the x-y-z symmetry
plane when the gravity is oriented in the x-y direction, while in other planes, full 3D
models are required to unlock the mystery of the complex 3D flow structures. The time
evolution of maximum velocity in the melt, as the g-jitter disturbances take effect in
x-y-z direction, is also shown in Figure 5.

Numerical simulations were also conducted with a magnetic field applied in the x- or
z-direction to understand the damping effects of the field on the complex 3D transient
g-jitter induced flows as discussed above. The computed results for the maximum
velocity in the melt are also shown in Figure 5. Inspection of these results illustrates
that an applied magnetic field is also effective in suppressing the transient g-jitter
induced flows and, more importantly, the field in z-direction has the most significant
damping effect for the system studied here. This holds true irrespective of g-jitter
orientations. Additional 3D numerical simulations agree with the findings obtained
from the previous 2D damping model (Shang et al., 2001) that the magnetic damping
effect becomes stronger with an increase of the applied field strength. Analysis of the

Figure 5.
History of transient

maximum flow velocity
induced by the single

frequency g-jitter
ð1023 sinð0:2ptÞÞ acting in
(a) x-direction; and (b) x-y-z

direction without
magnetic field and with

magnetic field B ¼ 0:22 T
ðHa ¼ 100Þ in the x- or
z-direction, respectively
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3D flow structures and their time evolution patterns shows that the 3D flow patterns
are similar to those without the magnetic field, but with much weaker flow intensity.
For example, compared with the case without the magnetic field, the maximum
velocities of the flow field (Umax) at time t ¼ 5:525 and t ¼ 6:175 are reduced by more
than 50 percent when the field is applied (Figure 8). These convective flows oscillate

Figure 6.
The flow field patterns in
x-z plane with the single
frequency g-jitter
perturbation acting in
x-direction without
applied magnetic field in
one time-harmonic period
of the driving force (a)
t ¼ 5:525;Umax ¼ 0:0702;
(b) t ¼ 5:85;Umax ¼
0:0953;
(c) t ¼ 6:175;Umax ¼
0:0702;
(d) t ¼ 6:5;Umax ¼ 0:0953
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time-harmonically at the same frequency of g-jitter, but with a phase lag that is also a
function of the applied magnetic field. These observations are also consistent with the
3D simulations obtained for other orientations and magnitudes of the g-jitter and
magnetic fields.

Figure 7.
The flow field patterns in

the y-z plane with the
single frequency g-jitter

perturbation acting in
x-direction without

applied magnetic field in
one time-harmonic period

of the driving force (a) t ¼
5:525;Umax ¼ 0:0702; (b)
t ¼ 5:85;Umax ¼ 0:0953;

(c) t ¼ 6:175;Umax ¼
0:0702; (d) t ¼

6:5;Umax ¼ 0:0953
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The effects of g-jitter on the solute transport in the melt with and without an applied
magnetic field, which are the major concern of a space flight, are shown in Figure 9.
The solute concentration distribution significantly deviates from the
diffusion-controlled growth mechanism and reveals the strong effect of g-jitter
induced convection on the solute transport (Figure 9(a) and (b)). The convection results

Figure 8.
The flow field patterns
with the single frequency
g-jitter perturbation acting
in x-direction in presence
of applied magnetic field
in z-direction in (a) x-z
plane, t ¼ 5:525;Umax ¼
0:0248; (b) y-z plane, t ¼
5:525;Umax ¼ 0:0248; (c)
x-z plane, t ¼
6:175;Umax ¼ 0:0318; (d)
y-z plane, t ¼
6:175;Umax ¼ 0:0318
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Figure 9.
Plane-cut views of the

solute concentration
distribution induced by
single frequency g-jitter

ð1023sinð0:2ptÞÞ acting in
x-direction without

magnetic field (a) x-z
plane; (b) y-z plane; (c)

growth interface, and with
magnetic field B ¼ 0:22T
ðHa ¼ 100Þ in z-direction;
(d) x-z plane; (e) y-z plane;

(f) growth interface
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in a large solute concentration distribution non-uniformity at the solid-liquid interface.
Moreover, the solute concentration distribution is 3D, a manifestation of a strong,
complex, 3D flow in the liquid pool (Figure 9(c)). When the magnetic field is applied,
however, the thermal convection driven by the g-jitter is suppressed, and consequently
the solute concentration distribution becomes much more uniform both in the bulk of
the liquid and at the solid-liquid interface (Figure 9(d), (e) and (f)). Detailed analysis of
concentration time-evolution was performed in various planes and at many different
locations. These analyses indicate that the concentration distribution does not
experience a conspicuous bulk oscillation and rotation as exhibited in velocity fields
(Figure 6), but the evolution of concentrations at specific locations in the liquid is
oscillatory, displaying very similar behavior as shown in Figure 5.

5.4 Real g-jitter
The above study of idealized synthetic single-frequency g-jitter component provides a
good assessment of magnetic field effects on oscillating gravity field, and helps to
develop a fundamental understanding of magnetic damping in microgravity. The
single frequency component, however, is far from reality in that the g-jitter
perturbations during a typical space flight is random in nature and varies in both
direction and time (Figure 1). Understanding and control of the convection generated
by these random gravity signatures is of critical importance to the melt growth of
consistent, high quality single crystals. In this regard, numerical simulations were
carried out using the real g-jitter data shown in Figure 1. Here again the computations
are based on the assumption that the magnetic field is switched on when the g-jitter
sets in.

Figure 10 shows the time-evolving field variables (c, u, v and w) in the melt induced
by g-jitter signatures with and without an applied field. It can be seen that the velocity
development is random in amplitude with time and is consistent with the real g-jitter
data in both the absence and presence of the magnetic field. Particularly noticeable is
that the velocity spikes up in response to a sudden amplitude increase of the g-jitter
perturbations, though detailed analyses show that these spikes lag behind those of the
real g-jitter, as has been discussed in the single frequency simulations. These velocity
spikes are a culprit for the irregular solute concentration distributions and defects
formed in the crystals grown during the space flight. It is also clear from Figure 10 that
the magnetic fields can effectively suppress the irregular convection in a real g-jitter
environment, especially for those large amplitude velocity spikes.

The magnetic damping effects on the flow field in x-z and y-z planes at the time
when the velocity spikes are shown in Figure 11. It is important to notice that without
the applied field, the flow field is evidently 3D, whereas with B ¼ 0.22T (Ha ¼ 100),
applied in the z-direction, the strong convection is reduced to almost a plug flow, which
is qualitatively agrees with the 2D model by Shang et al. (2001). It is also noteworthy
that with the applied field, the solute concentration spikes due to g-jitter induced
convection are largely smoothed out as a result of substantially reduced flows
(Figure 10). These results suggest that with an appropriate magnetic field, the thermal
convection spikes and the solute concentration irregularities caused by g-jitter
perturbations can be effectively reduced to below a preset threshold value required for
a specific space experiment. For real g-jitter data, numerical simulations were also
conducted with different orientations and strengths of applied magnetic fields and the
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conclusions are corroborated with the single frequency cases, that is, the damping is
more effective with a stronger field and the field in the z-direction produces the
strongest damping effect, in comparison with other orientations.

6. Concluding remarks
A full 3D transient finite element model has been presented for the fluid flow and
heat and mass transfer phenomena in a simplified Bridgman configuration under a
combined action of g-jitter perturbations and externally applied magnetic fields. The
model is developed based on the Galerkin finite element solution of transient
Navier-Stokes equations, thermal balance and solutal transport equations, and the
simplified Maxwell equations. To increase the computational efficiency, an iterative
procedure based on a physics-based re-numbering algorithm has been applied.
Numerical simulations were conducted with steady low gravity forces, single
frequency g-jitter and real g-jitter data taken during a space flight. It is found that
g-jitter drives a complex, 3D, time dependent thermal convection even when the
thermal boundary conditions are axisymmetric. During a space flight, velocity
spikes emerge in response to gravity disturbances, which in turn produce irregular
solute concentration distributions responsible for inconsistent crystal qualities. An

Figure 10.
Evolution of the velocity

components and
concentration at the

location ðx ¼ 0; y ¼ 0; z ¼
0:1521Þ near the growth
front under real g-jitter
perturbations with and

without applied magnetic
field
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imposed magnetic field provides an effective means to suppress the deleterious
effects of g-jitter induced convection. Simulations with external magnetic fields of
various strengths and orientations show that the field aligned with the thermal
gradient provides an optimal damping effect, and a stronger field is more effective

Figure 11.
The flow field patterns
under the real g-jitter
perturbations at the time
related to the velocity
spike in (a) x-z plane, Ha ¼
0;Umax ¼ 0:01248; (b) y-z
plane, Ha ¼ 0;Umax ¼
0:01248; (c) x-z plane,
Ha ¼ 100;Umax ¼ 0:0052;
(d) y-z plane, Ha ¼
100;Umax ¼ 0:0052
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in suppressing the g-jitter induced convection. With or without an applied field, the
convective flows and solute transport phenomena in the symmetry plane parallel to
the direction of g-jitter are essentially 2D, for which the widely used 2D models
provide a reasonably good approximation.
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